Description:

Size: 100 microliters

Catalog no.: GENTObs-1300R-A594

Price: 489 EUR

Product details

Gene ID

7010

Modification site

None

Swiss Prot

Q02763

Applications

IF(IHC-P)

Target Protein/Peptide

TIE2/CD202b

Excitation emission

590nm/617nm

Concentration

1ug per 1ul

Subcellular locations

Extracellular

Conjugated

Alexa conjugate 1

Conjugated with

ALEXA FLUOR® 594

Applications with corresponding dilutions

IF(IHC-P)(1:50-200)

Clonality

Polyclonal Antibody

Clone

Polyclonal Antibodies

Purification method

Purified by Protein A.

Group

Polyclonals and antibodies

Type

Conjugated Primary Antibody

Other name

Anti-TIE2/CD202b Polyclonal

Conjugation

Alexa Fluor,ALEXA FLUOR® 594

Host organism

Rabbit (Oryctolagus cuniculus)

Also known as

TIE2/CD202b Polyclonal Antibody

Properties

For facs or microscopy Alexa 1 conjugate.

Modification

No modification has been applied to this antibody

Specificity

This antibody reacts specifically with TIE2/CD202b

Antigen Source

KLH conjugated synthetic peptide derived from human Tie2

Cross reactive species

Human (Homo sapiens), Mouse (Mus musculus), Rat (Rattus norvegicus)

Storage

Water buffered solution containing 100ug/ml BSA, 50% glycerol and 0.09% sodium azide. Store at 4°C for 12 months.

Description

This antibody needs to be stored at + 4°C in a fridge short term in a concentrated dilution. Freeze thaw will destroy a percentage in every cycle and should be avoided.

About

Polyclonals can be used for Western blot, immunohistochemistry on frozen slices or parrafin fixed tissues. The advantage is that there are more epitopes available in a polyclonal antiserum to detect the proteins than in monoclonal sera.

Cross Reactive Species details

No significant cross reactivity has been observed for this antibody for the tested species. However, note that due to limited knowledge it is impossible to predict with 100% guarantee that the antibody does not corss react with any other species.

Synonyms

TIE2; VMCM; TIE-2; VMCM1; CD22B; Angiopoietin-1 receptor; Endothelial tyrosine kinase; Tunica interna endothelial cell kinase; Tyrosine kinase with Ig and EGF homology domains-2; Tyrosine-protein kinase receptor TEK; Tyrosine-protein kinase receptor TIE-2; hTIE2; p14 TEK; TEK

Advisory

Avoid freeze/thaw cycles as they may denaturate the polypeptide chains of the antibody, thus reducing its reactivity, specificity and sensitivity. For antibodies that are in liquid form or reconstituted lyophilized antibodies small amounts could become entrapped on the seal or the walls of the tube. Prior to use briefly centrifuge the vial to gather all the solution on the bottom.

Background information

Tyrosine-protein kinase that acts as cell-surface receptor for ANGPT1, ANGPT2 and ANGPT4 and regulates angiogenesis, endothelial cell survival, proliferation, migration, adhesion and cell spreading, reorganization of the actin cytoskeleton, but also maintenance of vascular quiescence. Has anti-inflammatory effects by preventing the leakage of proinflammatory plasma proteins and leukocytes from blood vessels. Required for normal angiogenesis and heart development during embryogenesis. Required for post-natal hematopoiesis. After birth, activates or inhibits angiogenesis, depending on the context. Inhibits angiogenesis and promotes vascular stability in quiescent vessels, where endothelial cells have tight contacts. In quiescent vessels, ANGPT1 oligomers recruit TEK to cell-cell contacts, forming complexes with TEK molecules from adjoining cells, and this leads to preferential activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascades. In migrating endothelial cells that lack cell-cell adhesions, ANGT1 recruits TEK to contacts with the extracellular matrix, leading to the formation of focal adhesion complexes, activation of PTK2/FAK and of the downstream kinases MAPK1/ERK2 and MAPK3/ERK1, and ultimately to the stimulation of sprouting angiogenesis. ANGPT1 signaling triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Signaling is modulated by ANGPT2 that has lower affinity for TEK, can promote TEK autophosphorylation in the absence of ANGPT1, but inhibits ANGPT1-mediated signaling by competing for the same binding site. Signaling is also modulated by formation of heterodimers with TIE1, and by proteolytic processing that gives rise to a soluble TEK extracellular domain. The soluble extracellular domain modulates signaling by functioning as decoy receptor for angiopoietins. TEK phosphorylates DOK2, GRB7, GRB14, PIK3R1; SHC1 and TIE1.