Description:

Size: 100ul

Catalog no.: bs-9652R-A594

Price: 380 EUR

Product details

Gene ID Number

753

Modification Site

None

Swiss Prot

O15165

Target Antigen

C18orf1

Subcellular location

Lumenal

Immunogen range

1-50/306

Tested applications

IF(IHC-P)

French translation

anticorps

Clonality

Polyclonal

Modification

Unmodified

Concentration

1ug per 1ul

Excitation emission

590nm/617nm

Crossreactivity

Human, Mouse, Rat

Conjugated with

ALEXA FLUOR® 594

Conjugated

Alexa conjugate 1

Recommended dilutions

IF(IHC-P)(1:50-200)

Clone

Polyclonal antibody

Purification

Purified by Protein A.

Category

Conjugated Primary Antibodies

Conjugation

Alexa Fluor,ALEXA FLUOR® 594

Host Organism

Rabbit (Oryctolagus cuniculus)

Also known as

Anti-C18orf1 PAb ALEXA FLUOR 594

Specificity

This is a highly specific antibody against C18orf1.

Long name

C18orf1 Polyclonal Antibody, ALEXA FLUOR 594 Conjugated

Synonyms

C18orf1; Low-density lipoprotein receptor class A domain-containing protein 4; LDLRAD4

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human C18orf1

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Background of the antigen

Functions as a negative regulator of TGF-beta signaling and thereby probably plays a role in cell proliferation, differentiation, apoptosis, motility, extracellular matrix production and immunosuppression. In the canonical TGF-beta pathway, ZFYVE9/SARA recruits the intracellular signal transducer and transcriptional modulators SMAD2 and SMAD3 to the TGF-beta receptor. Phosphorylated by the receptor, SMAD2 and SMAD3 then form a heteromeric complex with SMAD4 that translocates to the nucleus to regulate transcription. Through interaction with SMAD2 and SMAD3, LDLRAD4 may compete with ZFYVE9 and SMAD4 and prevent propagation of the intracellular signal.