Description:

Size: 100ul

Catalog no.: bs-8078R-A594

Price: 380 EUR

Product details

Modification Site

None

Gene ID Number

91947

Target Antigen

ARRDC4

Tested applications

IF(IHC-P)

French translation

anticorps

Modification

Unmodified

Clonality

Polyclonal

Excitation emission

590nm/617nm

Concentration

1ug per 1ul

Crossreactivity

Human, Mouse, Rat

Conjugated with

ALEXA FLUOR® 594

Conjugated

Alexa conjugate 1

Recommended dilutions

IF(IHC-P)(1:50-200)

Clone

Polyclonal antibody

Purification

Purified by Protein A.

Category

Conjugated Primary Antibodies

Conjugation

Alexa Fluor,ALEXA FLUOR® 594

Host Organism

Rabbit (Oryctolagus cuniculus)

Also known as

Anti-ARRDC4 PAb ALEXA FLUOR 594

Specificity

This is a highly specific antibody against ARRDC4.

Long name

ARRDC4 Polyclonal Antibody, ALEXA FLUOR 594 Conjugated

Synonyms

ARRDC 4; Arrestin domain containing protein 4; ARRD4_HUMAN.

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human ARRDC4

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Background of the antigen

ARRDC4 belongs to the arrestin family. The arrestins are a family of proteins that are important for regulating signal transduction within cells. Arrestins are part of a conserved two step mechanism for regulating the activity of G-protein coupled receptors (GPCRs). In response to a stimulus, GPCRs activate a heterotrimeric G protein. In order to turn off this response, or adapt to a constant stimulus, activated receptors need to be silenced. The first step is phosphorylation by a class of serine/threonine kinases called G protein coupled receptor kinases (GRKs). This phosphorylation specifically marks the activated receptor for arrestin binding. Once arrestin is bound to the receptor it is unable to signal further. Recent research continues to expand the known actions of arrestins, which can bind to other classes of receptors and can directly activate signaling pathways on their own. Different arrestins (visual arrestin (or Arrestin 1), beta-arrestin 1 (or Arrestin 2) and beta-arrestin 2 (or Arrestin 3) can reduce the activity of their target GPCRs in several different ways.