Description:

Size: 100ul

Catalog no.: bs-1779R-A488

Price: 380 EUR

Product details

Modification Site

None

Target Antigen

GATA5

Gene ID Number

140628

Tested applications

IF(IHC-P)

French translation

anticorps

Clonality

Polyclonal

Modification

Unmodified

Conjugation

Alexa Fluor

Concentration

1ug per 1ul

Excitation emission

499nm/519nm

Conjugated with

ALEXA FLUOR® 488

Crossreactivity

Human, Mouse, Rat

Clone

Polyclonal antibody

Recommended dilutions

IF(IHC-P)(1:50-200)

Purification

Purified by Protein A.

Category

Conjugated Primary Antibodies

Host Organism

Rabbit (Oryctolagus cuniculus)

Also known as

Anti-GATA5 PAb ALEXA FLUOR 488

Specificity

This is a highly specific antibody against GATA5.

Long name

GATA5 Polyclonal Antibody, ALEXA FLUOR 488 Conjugated

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Synonyms

GATA binding protein 5; GATA-binding factor 5; GATA5; GATA-5; GATA5_HUMAN; Transcription factor GATA-5.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human GATA-5

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.Alexa Fluor 488 has the same range to that of fluorescein isothiocyanate (FITC), yet the Anti-GATA5 has a very high photo stability. As a result of this photo stability, it has turned into an antibody for fluorescent microscopy and FACS FLOW cytometry. It is distinguished in the FL1 of a FACS-Calibur or FACScan. Also Alexa Fluor 488 is pH stable.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Background of the antigen

Members of the GATA family share a conserved zinc finger DNA-binding domain and are capable of binding the WGATAR consensus sequence. GATA-1 is erythroid-specific and is responsible for the regulated transcription of erythroid genes. It is an essential component in the generation of the erythroid lineage. GATA-2 is expressed in embryonic brain and liver, HeLa and endothelial cells, as well as in erythroid cells. Studies with a modified GATA consensus sequence, AGATCTTA, have shown that GATA-2 and GATA-3 recognize this mutated consensus while GATA-1 has poor recognition of this sequence. This indicates broader regulatory capabilities of GATA-2 and GATA-3 than GATA-1. GATA-3 is highly expressed in T lymphocytes. GATA-4, GATA-5 and GATA-6 comprise a subfamily of transcription factors. Both GATA-4 and GATA-6 are found in heart, pancreas and ovary; lung and liver tissues exhibit GATA-6, but not GATA-4 expression. GATA-5 expression has been observed in differentiated heart and gut tissues and is present throughout the course of development in the heart. Although expression patterns of the various GATA transcription factors may overlap, it is not yet apparent how the GATA factors are able to discriminate in binding their appropriate target sites.