Description:

Size: 100 microliters

Catalog no.: GENTObs-2696R-A594

Price: 489 EUR

Product details

Gene ID

6279

Modification site

None

Swiss Prot

P05109

Target Protein/Peptide

S100A8

Applications

IF(IHC-P)

Excitation emission

590nm/617nm

Concentration

1ug per 1ul

Conjugated

Alexa conjugate 1

Conjugated with

ALEXA FLUOR® 594

Applications with corresponding dilutions

IF(IHC-P)(1:50-200)

Clonality

Polyclonal Antibody

Clone

Polyclonal Antibodies

Other name

Anti-S100A8 Polyclonal

Purification method

Purified by Protein A.

Also known as

S100A8 Polyclonal Antibody

Group

Polyclonals and antibodies

Type

Conjugated Primary Antibody

Conjugation

Alexa Fluor,ALEXA FLUOR® 594

Host organism

Rabbit (Oryctolagus cuniculus)

Subcellular locations

Cytoplasm, Secreted, Cell membrane

Properties

For facs or microscopy Alexa 1 conjugate.

Specificity

This antibody reacts specifically with S100A8

Cross reactive species

Mouse (Mus musculus), Rat (Rattus norvegicus)

Modification

No modification has been applied to this antibody

Antigen Source

KLH conjugated synthetic peptide derived from mouse S100-A8

Storage

Water buffered solution containing 100ug/ml BSA, 50% glycerol and 0.09% sodium azide. Store at 4°C for 12 months.

Description

This antibody needs to be stored at + 4°C in a fridge short term in a concentrated dilution. Freeze thaw will destroy a percentage in every cycle and should be avoided.

About

Polyclonals can be used for Western blot, immunohistochemistry on frozen slices or parrafin fixed tissues. The advantage is that there are more epitopes available in a polyclonal antiserum to detect the proteins than in monoclonal sera.

Cross Reactive Species details

No significant cross reactivity has been observed for this antibody for the tested species. However, note that due to limited knowledge it is impossible to predict with 100% guarantee that the antibody does not corss react with any other species.

Synonyms

P8; MIF; NIF; CAGA; CFAG; CGLA; L1Ag; MRP8; CP-10; MA387; 60B8AG; Protein S100-A8; Calgranulin-A; Calprotectin L1L subunit; Cystic fibrosis antigen; Leukocyte L1 complex light chain; Migration inhibitory factor-related protein 8; MRP-8; S100 calcium-binding protein A8; Urinary stone protein band A; S100A8

Advisory

Avoid freeze/thaw cycles as they may denaturate the polypeptide chains of the antibody, thus reducing its reactivity, specificity and sensitivity. For antibodies that are in liquid form or reconstituted lyophilized antibodies small amounts could become entrapped on the seal or the walls of the tube. Prior to use briefly centrifuge the vial to gather all the solution on the bottom.

Background information

S100A8 is a calcium- and zinc-binding protein which plays a prominent role in the regulation of inflammatory processes and immune response. It can induce neutrophil chemotaxis and adhesion. Predominantly found as calprotectin (S100A8/A9) which has a wide plethora of intra- and extracellular functions. The intracellular functions include: facilitating leukocyte arachidonic acid trafficking and metabolism, modulation of the tubulin-dependent cytoskeleton during migration of phagocytes and activation of the neutrophilic NADPH-oxidase. Activates NADPH-oxidase by facilitating the enzyme complex assembly at the cell membrane, transferring arachidonic acid, an essential cofactor, to the enzyme complex and S100A8 contributes to the enzyme assembly by directly binding to NCF2/P67PHOX. The extracellular functions involve proinfammatory, antimicrobial, oxidant-scavenging and apoptosis-inducing activities. Its proinflammatory activity includes recruitment of leukocytes, promotion of cytokine and chemokine production, and regulation of leukocyte adhesion and migration. Acts as an alarmin or a danger associated molecular pattern (DAMP) molecule and stimulates innate immune cells via binding to pattern recognition receptors such as Toll-like receptor 4 (TLR4) and receptor for advanced glycation endproducts (AGER). Binding to TLR4 and AGER activates the MAP-kinase and NF-kappa-B signaling pathways resulting in the amplification of the proinflammatory cascade. Has antimicrobial activity towards bacteria and fungi and exerts its antimicrobial activity probably via chelation of Zn(2+) which is essential for microbial growth. Can induce cell death via autophagy and apoptosis and this occurs through the cross-talk of mitochondria and lysosomes via reactive oxygen species (ROS) and the process involves BNIP3. Can regulate neutrophil number and apoptosis by an anti-apoptotic effect; regulates cell survival via ITGAM/ITGB and TLR4 and a signaling mechanism involving MEK-ERK.