Description:

Size: 100 microliters

Catalog no.: GENTObs-2803R-A594

Price: 489 EUR

Product details

Gene ID

7128

Modification site

None

Swiss Prot

P21580

Target Protein/Peptide

TNFAIP3

Applications

IF(IHC-P)

Excitation emission

590nm/617nm

Concentration

1ug per 1ul

Conjugated

Alexa conjugate 1

Conjugated with

ALEXA FLUOR® 594

Applications with corresponding dilutions

IF(IHC-P)(1:50-200)

Clonality

Polyclonal Antibody

Clone

Polyclonal Antibodies

Purification method

Purified by Protein A.

Other name

Anti-TNFAIP3 Polyclonal

Group

Polyclonals and antibodies

Type

Conjugated Primary Antibody

Also known as

TNFAIP3 Polyclonal Antibody

Subcellular locations

Cytoplasm, Nucleus, Lysosome

Conjugation

Alexa Fluor,ALEXA FLUOR® 594

Host organism

Rabbit (Oryctolagus cuniculus)

Properties

For facs or microscopy Alexa 1 conjugate.

Specificity

This antibody reacts specifically with TNFAIP3

Modification

No modification has been applied to this antibody

Antigen Source

KLH conjugated synthetic peptide derived from human TNFAIP3

Cross reactive species

Human (Homo sapiens), Mouse (Mus musculus), Rat (Rattus norvegicus)

Storage

Water buffered solution containing 100ug/ml BSA, 50% glycerol and 0.09% sodium azide. Store at 4°C for 12 months.

Description

This antibody needs to be stored at + 4°C in a fridge short term in a concentrated dilution. Freeze thaw will destroy a percentage in every cycle and should be avoided.

Synonyms

A20; OTUD7C; TNFA1P2; Tumor necrosis factor alpha-induced protein 3; TNF alpha-induced protein 3; OTU domain-containing protein 7C; Putative DNA-binding protein A20; Zinc finger protein A20; TNFAIP3

About

Polyclonals can be used for Western blot, immunohistochemistry on frozen slices or parrafin fixed tissues. The advantage is that there are more epitopes available in a polyclonal antiserum to detect the proteins than in monoclonal sera.

Cross Reactive Species details

No significant cross reactivity has been observed for this antibody for the tested species. However, note that due to limited knowledge it is impossible to predict with 100% guarantee that the antibody does not corss react with any other species.

Advisory

Avoid freeze/thaw cycles as they may denaturate the polypeptide chains of the antibody, thus reducing its reactivity, specificity and sensitivity. For antibodies that are in liquid form or reconstituted lyophilized antibodies small amounts could become entrapped on the seal or the walls of the tube. Prior to use briefly centrifuge the vial to gather all the solution on the bottom.

Background information

Ubiquitin-editing enzyme that contains both ubiquitin ligase and deubiquitinase activities. Involved in immune and inflammatory responses signaled by cytokines, such as TNF-alpha and IL-1 beta, or pathogens via Toll-like receptors (TLRs) through terminating NF-kappa-B activity. Essential component of a ubiquitin-editing protein complex, comprising also RNF11, ITCH and TAX1BP1, that ensures the transient nature of inflammatory signaling pathways. In cooperation with TAX1BP1 promotes disassembly of E2-E3 ubiquitin protein ligase complexes in IL-1R and TNFR-1 pathways; affected are at least E3 ligases TRAF6, TRAF2 and BIRC2, and E2 ubiquitin-conjugating enzymes UBE2N and UBE2D3. In cooperation with TAX1BP1 promotes ubiquitination of UBE2N and proteasomal degradation of UBE2N and UBE2D3. Upon TNF stimulation, deubiquitinates 'Lys-63'-polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains. This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NF-kappa-B. Deubiquitinates TRAF6 probably acting on 'Lys-63'-linked polyubiquitin. Upon T-cell receptor (TCR)-mediated T-cell activation, deubiquitinates 'Lys-63'-polyubiquitin chains on MALT1 thereby mediating disassociation of the CBM (CARD11:BCL10:MALT1) and IKK complexes and preventing sustained IKK activation. Deubiquitinates NEMO/IKBKG; the function is facilitated by TNIP1 and leads to inhibition of NF-kappa-B activation. Upon stimulation by bacterial peptidoglycans, probably deubiquitinates RIPK2. Can also inhibit I-kappa-B-kinase (IKK) through a non-catalytic mechanism which involves polyubiquitin; polyubiquitin promotes association with IKBKG and prevents IKK MAP3K7-mediated phosphorylation. Targets TRAF2 for lysosomal degradation. In vitro able to deubiquitinate 'Lys-11'-, 'Lys-48'- and 'Lys-63' polyubiquitin chains. Inhibitor of programmed cell death.