Description:

Size: 100ul

Catalog no.: bs-15486R-A488

Price: 380 EUR

Product details

Target Antigen

HIC2

Modification Site

None

Gene ID Number

23119

Tested applications

IF(IHC-P)

French translation

anticorps

Clonality

Polyclonal

Modification

Unmodified

Conjugation

Alexa Fluor

Concentration

1ug per 1ul

Excitation emission

499nm/519nm

Conjugated with

ALEXA FLUOR® 488

Crossreactivity

Human, Mouse, Rat

Clone

Polyclonal antibody

Recommended dilutions

IF(IHC-P)(1:50-200)

Purification

Purified by Protein A.

Category

Conjugated Primary Antibodies

Also known as

Anti-HIC2 PAb ALEXA FLUOR 488

Host Organism

Rabbit (Oryctolagus cuniculus)

Specificity

This is a highly specific antibody against HIC2.

Long name

HIC2 Polyclonal Antibody, ALEXA FLUOR 488 Conjugated

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human HIC2

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Synonyms

HIC1 related gene on chromosome 22; HIC2; Hic3; HRG22; Hypermethylated in cancer 2 protein; KIAA1020; ZBTB30; Zinc finger and BTB domain-containing protein 30; ZNF907; HIC2_HUMAN.

Properties

For facs or microscopy Alexa 1 conjugate.Alexa Fluor 488 has the same range to that of fluorescein isothiocyanate (FITC), yet the Anti-HIC2 has a very high photo stability. As a result of this photo stability, it has turned into an antibody for fluorescent microscopy and FACS FLOW cytometry. It is distinguished in the FL1 of a FACS-Calibur or FACScan. Also Alexa Fluor 488 is pH stable.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Background of the antigen

Zinc-finger proteins contain DNA-binding domains and have a wide variety of functions, most of which encompass some form of transcriptional activation or repression. The majority of zinc-finger proteins contain a Krüppel-type DNA binding domain and a KRAB domain, which is thought to interact with KAP1, thereby recruiting histone modifying proteins. HIC-2 (hypermethylated in cancer 2) possesses zinc finger motifs that are thought to be important for DNA-binding and also has a BTB/POZ domain at the N-terminus, which is thought to be important for protein-protein binding, as well as for the binding of transcription factors. HIC-2 is also known as Hic-3, HIC1-related gene on chromosome 22 or Zinc finger and BTB domain-containing protein 30, and is a 615 amino acid protein that is expressed as two isoforms produced by alternative splicing. HIC-2 is highly expressed in cerebellum and is localized to the nucleus in cells. HIC-2 contains a short amino acid sequence that is thought to interact with CtBP, a transcriptional repressor. The gene sequence associated with HIC-2 is thought to be a target for miRNAs (microRNAs) which are expressed in many cancers, suggesting that HIC-2 could possess tumor suppressor capabilities.