Description:

Size: 100ul

Catalog no.: bs-12103R-A350

Price: 380 EUR

Product details

Modification Site

None

French translation

anticorps

Tested applications

IF(IHC-P)

Clonality

Polyclonal

Modification

Unmodified

Concentration

1ug per 1ul

Excitation emission

343nm/442nm

Target Antigen

NMDAR3A + 3B

Conjugated with

ALEXA FLUOR® 350

Crossreactivity

Human, Mouse, Rat

Recommended dilutions

IF(IHC-P)(1:50-200)

Clone

Polyclonal antibody

Purification

Purified by Protein A.

Conjugation

Alexa Fluor,ALEXA FLUOR 350

Category

Conjugated Primary Antibodies

Host Organism

Rabbit (Oryctolagus cuniculus)

Also known as

Anti-NMDAR3A + 3B PAb ALEXA FLUOR 350

Specificity

This is a highly specific antibody against NMDAR3A + 3B.

Long name

NMDAR3A + 3B Polyclonal Antibody, ALEXA FLUOR 350 Conjugated

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human NMDAR3A + 3B

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.Alexa Fluor 350 conjugates can be used in multi-color flow cytometry with FACS's equipped with a second red laser or red diode.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Synonyms

Glutamate Receptor Ionotropic N methyl D aspartate 3A; Glutamate Receptor Ionotropic N methyl D aspartate 3B; Glutamate Receptor Ionotropic N-methyl-D-aspartate 3A; Glutamate Receptor Ionotropic N-methyl-D-aspartate 3B; GRIN3A; GRIN3B; NMDA receptor subunit 3A; NMDA receptor subunit 3B; NMDA Type Glutamate Receptor Subunit NR3B Precursor; NMDAR-L; NR3A; NR3B; NMD3B_HUMAN; NMD3A_HUMAN。

Background of the antigen

Glutamate receptors mediate most excitatory neurotransmission in the brain and play an important role in neural plasticity, neural development and neuro-degeneration. Ionotropic glutamate receptors are categorized into NMDA receptors and kainate/AMPA receptors, both of which contain glutamate-gated, cation-specific ion channels. Kainate/AMPA receptors co-localize with NMDA receptors in many synapses and consist of seven structurally related subunits designated GluR-1 to 7. The kainate/AMPA receptors are primarily responsible for fast excitatory neurotransmission by glutamate, whereas the NMDA receptors exhibit slow kinesis of Ca2+ ions and a high permeability for Ca2+ ions. One such NMDA receptor, NR3B, is expressed in motor neurons and forms cation channels impermeable to calcium, which can resist many open-channel blockers. NR3B functions in the brain as an excitatory glycine receptor, modifying the normal role of glycine as an inhibitory neurotransmitter.