Description:

Size: 100ul

Catalog no.: bs-15559R-A350

Price: 380 EUR

Product details

Modification Site

None

Target Antigen

T140

French translation

anticorps

Tested applications

IF(IHC-P)

Clonality

Polyclonal

Modification

Unmodified

Excitation emission

343nm/442nm

Concentration

1ug per 1ul

Conjugated with

ALEXA FLUOR® 350

Crossreactivity

Human, Mouse, Rat

Recommended dilutions

IF(IHC-P)(1:50-200)

Clone

Polyclonal antibody

Purification

Purified by Protein A.

Conjugation

Alexa Fluor,ALEXA FLUOR 350

Category

Conjugated Primary Antibodies

Also known as

Anti-T140 PAb ALEXA FLUOR 350

Host Organism

Rabbit (Oryctolagus cuniculus)

Specificity

This is a highly specific antibody against T140.

Long name

IFT140 Polyclonal Antibody, ALEXA FLUOR 350 Conjugated

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human IFT140

Synonyms

Gs114; Intraflagellar transport 140 homolog Chlamydomonas; WD and tetratricopeptide repeats protein 2; 140_HUMAN; WDTC2.

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.Alexa Fluor 350 conjugates can be used in multi-color flow cytometry with FACS's equipped with a second red laser or red diode.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Background of the antigen

IFT140 is a gene encodes one of the subunits of the intraflagellar transport (IFT) complex A. Intraflagellar transport is involved in the genesis, resorption and signaling of primary cilia. The primary cilium is a microtubule-based sensory organelle at the surface of most quiescent mammalian cells, that receives signals from its environment, such as the flow of fluid, light or odors, and transduces those signals to the nucleus. Loss of the corresponding protein in mouse results in renal cystic disease.