Description:

Size: 100ul

Catalog no.: bs-3990R-A488

Price: 380 EUR

Product details

Gene ID Number

2992

Target Antigen

GYG1

Modification Site

None

Tested applications

IF(IHC-P)

French translation

anticorps

Clonality

Polyclonal

Modification

Unmodified

Conjugation

Alexa Fluor

Concentration

1ug per 1ul

Excitation emission

499nm/519nm

Conjugated with

ALEXA FLUOR® 488

Crossreactivity

Human, Mouse, Rat

Clone

Polyclonal antibody

Recommended dilutions

IF(IHC-P)(1:50-200)

Purification

Purified by Protein A.

Category

Conjugated Primary Antibodies

Also known as

Anti-GYG1 PAb ALEXA FLUOR 488

Host Organism

Rabbit (Oryctolagus cuniculus)

Specificity

This is a highly specific antibody against GYG1.

Long name

GYG1 Polyclonal Antibody, ALEXA FLUOR 488 Conjugated

Synonyms

Glycogenin; Glycogenin1; GYG 1; GYG; GYG1; GLYG_HUMAN.

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human Gyg1

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.Alexa Fluor 488 has the same range to that of fluorescein isothiocyanate (FITC), yet the Anti-GYG1 has a very high photo stability. As a result of this photo stability, it has turned into an antibody for fluorescent microscopy and FACS FLOW cytometry. It is distinguished in the FL1 of a FACS-Calibur or FACScan. Also Alexa Fluor 488 is pH stable.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Background of the antigen

This gene encodes a member of the glycogenin family. Glycogenin is a glycosyltransferase that catalyzes the formation of a short glucose polymer from uridine diphosphate glucose in an autoglucosylation reaction. This reaction is followed by elongation and branching of the polymer, catalyzed by glycogen synthase and branching enzyme, to form glycogen. This gene is expressed in muscle and other tissues. Mutations in this gene result in glycogen storage disease XV. This gene has pseudogenes on chromosomes 1, 8 and 13 respectively. Alternatively spliced transcript variants encoding different isoforms have been identified.[provided by RefSeq, Sep 2010].