Description:

Size: 100ul

Catalog no.: bs-5915R-A594

Price: 380 EUR

Product details

Gene ID Number

4152

Target Antigen

MBD1

Modification Site

None

Tested applications

IF(IHC-P)

French translation

anticorps

Modification

Unmodified

Clonality

Polyclonal

Excitation emission

590nm/617nm

Concentration

1ug per 1ul

Crossreactivity

Human, Mouse, Rat

Conjugated with

ALEXA FLUOR® 594

Conjugated

Alexa conjugate 1

Recommended dilutions

IF(IHC-P)(1:50-200)

Clone

Polyclonal antibody

Purification

Purified by Protein A.

Category

Conjugated Primary Antibodies

Also known as

Anti-MBD1 PAb ALEXA FLUOR 594

Conjugation

Alexa Fluor,ALEXA FLUOR® 594

Host Organism

Rabbit (Oryctolagus cuniculus)

Specificity

This is a highly specific antibody against MBD1.

Long name

MBD1 Polyclonal Antibody, ALEXA FLUOR 594 Conjugated

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human MBD1

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Synonyms

CXXC 3; CXXC3; MBD 1; MBD1; MECP1 COMPLEX; Methyl CpG binding domain protein 1; Methyl CpG binding domain protein 1 isoform PCM1; Methyl CpG binding protein MBD1; Methyl CpG binding protein splice variant 1; Methyl CpG binding protein splice variant 2; Methyl CpG binding protein splice variant 3; Methyl CpG binding protein splice variant 4; PCM 1; PCM1; Protein containing methyl CpG binding domain 1; Regulator of fibroblast growth factor 2 FGF 2 transcription; RFT; The regulator of fibroblast growth factor 2FGF 2 transcription.

Background of the antigen

DNA methylation, or the addition of methyl groups to cytosine bases in the dinucleotide CpG, is imperative to proper development and regulates gene expression. The methylation pattern involves the enzymatic processes of methylation and demethylation. The demethylation enzyme was recently found to be a mammalian protein, which exhibits demethylase activity associated to a methyl-CpG-binding domain (MBD). The enzyme is able to revert methylated cytosine bases to cytosines within the particular dinucleotide sequence mdCpdG by catalyzing the cleaving of the methyl group as methanol. MeCP2 and MBD1 (PCM1) are first found to repress transcription by binding specifically to methylated DNA. MBD2 and MBD4 (also known as MED1) were later found to colocalize with foci of heavily methylated satellite DNA and believed to mediate the biological functions of the methylation signal. Surprisingly, MBD3 does not bind methylated DNA both in vivo and in vitro. MBD1, MBD2, MBD3, and MBD4 are found to be expressed in somatic tissues, but the expression of MBD1 and MBD2 is reduced or absent in embryonic stem cells, which are known to be deficient in MeCP1 activity. MBD4 have homology to bacterial base excision repair DNA N-glycosylases/lyases. In some microsatellite unstable tumors MBD4 is mutated at an exonic polynucleotide tract.