Description:

Size: 100ul

Catalog no.: bs-13185R-A488

Price: 380 EUR

Product details

Modification Site

None

Gene ID Number

342184

Tested applications

IF(IHC-P)

French translation

anticorps

Modification

Unmodified

Clonality

Polyclonal

Excitation emission

499nm/519nm

Conjugation

Alexa Fluor

Concentration

1ug per 1ul

Target Antigen

FMN1/Formin 1

Crossreactivity

Human, Mouse, Rat

Conjugated with

ALEXA FLUOR® 488

Recommended dilutions

IF(IHC-P)(1:50-200)

Clone

Polyclonal antibody

Purification

Purified by Protein A.

Category

Conjugated Primary Antibodies

Host Organism

Rabbit (Oryctolagus cuniculus)

Also known as

Anti-FMN1/Formin 1 PAb ALEXA FLUOR 488

Specificity

This is a highly specific antibody against FMN1/Formin 1.

Long name

FMN1/Formin 1 Polyclonal Antibody, ALEXA FLUOR 488 Conjugated

Synonyms

FMN; Formin 1; Formin1; Formin-1; LD; Limb deformity protein homolog; FMN1_HUMAN.

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human FMN1/Formin 1

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.Alexa Fluor 488 has the same range to that of fluorescein isothiocyanate (FITC), yet the Anti-FMN1/Formin 1 has a very high photo stability. As a result of this photo stability, it has turned into an antibody for fluorescent microscopy and FACS FLOW cytometry. It is distinguished in the FL1 of a FACS-Calibur or FACScan. Also Alexa Fluor 488 is pH stable.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Background of the antigen

The temporal genetic hierarchy influencing normal limb development can deregulate and mediate mammalian developmental syndromes. In mice, the limb deformity (ld) locus influences normal limb development and gives rise to alternative mRNAs that can translate into a family of proteins known as formins. Formins play a crucial role in cytoskeletal reorganization by influencing Actin filament assembly. Formins co-localize with the actin cytoskeleton and can translocate into the cell cytosol and into the nucleus in an HGF-dependent manner. Vertebrate nuclear formins can control polarizing activity in limb buds through establishment of a Sonic hedgehog/FGF-4 feedback loop. Deficiency mutations at the mammalian ld locus lead to profound developmental defects in limb and kidney formation. The human Formin 1 and 2 genes map to chromosome 15q13.3 and 1q43, respectively.