Description:

Size: 100ul

Catalog no.: bs-0179R-A594

Price: 380 EUR

Product details

Gene ID Number

1742

Modification Site

None

Target Antigen

PSD95

Swiss Prot

P78352

Tested applications

IF(IHC-P)

French translation

anticorps

Modification

Unmodified

Clonality

Polyclonal

Excitation emission

590nm/617nm

Concentration

1ug per 1ul

Immunogen range

470-520/724

Subcellular location

Cell membrane

Crossreactivity

Human, Mouse, Rat

Conjugated

Alexa conjugate 1

Conjugated with

ALEXA FLUOR® 594

Clone

Polyclonal antibody

Recommended dilutions

IF(IHC-P)(1:50-200)

Purification

Purified by Protein A.

Conjugation

Alexa Fluor,ALEXA FLUOR® 594

Category

Conjugated Primary Antibodies

Host Organism

Rabbit (Oryctolagus cuniculus)

Also known as

Anti-PSD95 PAb ALEXA FLUOR 594

Specificity

This is a highly specific antibody against PSD95.

Long name

Post-synaptic density protein 95 Antibody, ALEXA FLUOR 594 Conjugated

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human PSD95

Synonyms

PSD95; SAP9; SAP-9; Disks large homolog 4; Postsynaptic density protein 95; PSD-95; Synapse-associated protein 9; DLG4

Description

High and low density proteins are supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR in volumes of 1. Other densities are possible.

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Background of the antigen

Interacts with the cytoplasmic tail of NMDA receptor subunits and shaker-type potassium channels. Required for synaptic plasticity associated with NMDA receptor signaling. Overexpression or depletion of DLG4 changes the ratio of excitatory to inhibitory synapses in hippocampal neurons. May reduce the amplitude of ASIC3 acid-evoked currents by retaining the channel intracellularly. May regulate the intracellular trafficking of ADR1B (By similarity).