Description:

Size: 100ul

Catalog no.: bs-12937R-A555

Price: 380 EUR

Product details

Gene ID Number

1486

Target Antigen

CTBS

Modification Site

None

Tested applications

IF(IHC-P)

French translation

anticorps

Clonality

Polyclonal

Modification

Unmodified

Concentration

1ug per 1ul

Excitation emission

553nm/568nm

Conjugated with

ALEXA FLUOR® 555

Crossreactivity

Human, Mouse, Rat

Clone

Polyclonal antibody

Recommended dilutions

IF(IHC-P)(1:50-200)

Purification

Purified by Protein A.

Conjugation

Alexa Fluor,ALEXA FLUOR 555

Category

Conjugated Primary Antibodies

Also known as

Anti-CTBS PAb ALEXA FLUOR 555

Host Organism

Rabbit (Oryctolagus cuniculus)

Specificity

This is a highly specific antibody against CTBS.

Long name

CTBS Polyclonal Antibody, ALEXA FLUOR 555 Conjugated

Synonyms

Chitobiase di N acetyl; CTB; Di N acetylchitobiase; OTTHUMP00000011570; DIAC_HUMAN.

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human CTBS

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.Very high photo stable ALEXA conjugate.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Background of the antigen

CTBS is an evolutionarily conserved member of the glycosyl hydrolase 18 family of proteins. Localizing to the lysosome, CTBS plays a role in the degradation of asparagine-linked (Asn-linked) glycoproteins. Glycoproteins are translocated to lysosomes via endocytosis or autophagy where they are broken down by proteases and glycosidases. The catabolism of glycoproteins is an important step in the regular turnover of cellular contents and in maintaining the homeostasis of glycosylation. CTBS functions as a glycosidase that cleaves the reducing end GlcNAc from the core chitobiase unit of oligosaccharides. Before this reaction can occur, AGA (the lysosomal glycosylasparaginase) must first remove the Asn from the Asn-linked glycoprotein to expose the reducing end GlcNAc, thereby allowing CTBS to access the exposed moiety.