Description:

Size: 100ul

Catalog no.: bs-13361R-A488

Price: 380 EUR

Product details

Modification Site

None

Target Antigen

GIYD2

French translation

anticorps

Tested applications

IF(IHC-P)

Clonality

Polyclonal

Modification

Unmodified

Excitation emission

499nm/519nm

Concentration

1ug per 1ul

Conjugation

Alexa Fluor

Conjugated with

ALEXA FLUOR® 488

Crossreactivity

Human, Mouse, Rat

Recommended dilutions

IF(IHC-P)(1:50-200)

Clone

Polyclonal antibody

Purification

Purified by Protein A.

Category

Conjugated Primary Antibodies

Also known as

Anti-GIYD2 PAb ALEXA FLUOR 488

Host Organism

Rabbit (Oryctolagus cuniculus)

Specificity

This is a highly specific antibody against GIYD2.

Long name

GIYD2 Polyclonal Antibody, ALEXA FLUOR 488 Conjugated

Synonyms

FLJ23439; GIY YIG domain containing 2; GIYD 2; MGC2532; MGC5178ï¼› SLX1_HUMAN.

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human GIYD2

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.Alexa Fluor 488 has the same range to that of fluorescein isothiocyanate (FITC), yet the Anti-GIYD2 has a very high photo stability. As a result of this photo stability, it has turned into an antibody for fluorescent microscopy and FACS FLOW cytometry. It is distinguished in the FL1 of a FACS-Calibur or FACScan. Also Alexa Fluor 488 is pH stable.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Background of the antigen

This gene encodes a protein that is an important regulator of genome stability. The protein represents the catalytic subunit of the SLX1-SLX4 structure-specific endonuclease, which can resolve DNA secondary structures that are formed during repair and recombination processes. Two identical copies of this gene are located on the p arm of chromosome 16 due to a segmental duplication; this record represents the more telomeric copy. Alternative splicing results in multiple transcript variants. Read-through transcription also occurs between this gene and the downstream SULT1A4 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 4) gene.