Description:

Size: 100ul

Catalog no.: bs-3961R-A594

Price: 380 EUR

Product details

Gene ID Number

4724

Modification Site

None

Target Antigen

NDUFS4

Tested applications

IF(IHC-P)

French translation

anticorps

Modification

Unmodified

Clonality

Polyclonal

Excitation emission

590nm/617nm

Concentration

1ug per 1ul

Crossreactivity

Human, Mouse, Rat

Conjugated with

ALEXA FLUOR® 594

Conjugated

Alexa conjugate 1

Recommended dilutions

IF(IHC-P)(1:50-200)

Clone

Polyclonal antibody

Purification

Purified by Protein A.

Category

Conjugated Primary Antibodies

Conjugation

Alexa Fluor,ALEXA FLUOR® 594

Host Organism

Rabbit (Oryctolagus cuniculus)

Also known as

Anti-NDUFS4 PAb ALEXA FLUOR 594

Specificity

This is a highly specific antibody against NDUFS4.

Long name

NDUFS4 Polyclonal Antibody, ALEXA FLUOR 594 Conjugated

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human NDUFS4

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Synonyms

AQDQ; CI 18 kDa; CI AQDQ; Complex I 18 kDa; Complex I AQDQ; mitochondrial respiratory chain complex I 18 KD subunit; NADH dehydrogenase; NADH ubiquinone oxidoreductase 18 kDa subunit; NDUS4_HUMAN.

Properties

For facs or microscopy Alexa 1 conjugate.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Background of the antigen

This gene encodes an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), or NADH:ubiquinone oxidoreductase, the first multi-subunit enzyme complex of the mitochondrial respiratory chain. Complex I plays a vital role in cellular ATP production, the primary source of energy for many crucial processes in living cells. It removes electrons from NADH and passes them by a series of different protein-coupled redox centers to the electron acceptor ubiquinone. In well-coupled mitochondria, the electron flux leads to ATP generation via the building of a proton gradient across the inner membrane. Complex I is composed of at least 41 subunits, of which 7 are encoded by the mitochondrial genome and the remainder by nuclear genes. [provided by RefSeq, Jul 2008].