Description:

Size: 100ul

Catalog no.: bs-5513R-A350

Price: 350 EUR

Product details

Gene ID Number

4790

Crossreactivity

Human

Swiss Prot

P19838

Modification Site

Ser893

French translation

anticorps

Tested applications

IF(IHC-P)

Clonality

Polyclonal

Concentration

1ug per 1ul

Immunogen range

880-900/968

Excitation emission

343nm/442nm

Target Antigen

NFKB1 Ser893

Modification

Phosphorylation

Conjugated with

ALEXA FLUOR® 350

Subcellular location

Cytoplasm, Nucleus

Clone

Polyclonal antibody

Recommended dilutions

IF(IHC-P)(1:50-200)

Purification

Purified by Protein A.

Conjugation

Alexa Fluor,ALEXA FLUOR 350

Category

Conjugated Primary Antibodies

Host Organism

Rabbit (Oryctolagus cuniculus)

Also known as

Anti-NFKB1 Ser893 PAb ALEXA FLUOR 350

Specificity

This is a highly specific antibody against NFKB1 Ser893.

Long name

NFKB1 (Ser893) Polyclonal Antibody, ALEXA FLUOR 350 Conjugated

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

KLH conjugated synthetic phosphopeptide derived from human NF KappaB p105 around the phosphorylation site of Ser893

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Synonyms

p50; KBF1; p105; EBP-1; NF-kB1; NFKB-p50; NFkappaB; NF-kappaB; NFKB-p105; NF-kappa-B; Nuclear factor NF-kappa-B p105 subunit; DNA-binding factor KBF1; Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1; NFKB1

Properties

For facs or microscopy Alexa 1 conjugate.Alexa Fluor 350 conjugates can be used in multi-color flow cytometry with FACS's equipped with a second red laser or red diode.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Background of the antigen

NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally.