Description:

Size: 100ul

Catalog no.: bs-13230R-A488

Price: 380 EUR

Product details

Gene ID Number

2528

Modification Site

None

Crossreactivity

Human

Tested applications

IF(IHC-P)

French translation

anticorps

Clonality

Polyclonal

Modification

Unmodified

Concentration

1ug per 1ul

Excitation emission

499nm/519nm

Conjugation

Alexa Fluor

Target Antigen

FUT6/FucT-VI

Conjugated with

ALEXA FLUOR® 488

Clone

Polyclonal antibody

Recommended dilutions

IF(IHC-P)(1:50-200)

Purification

Purified by Protein A.

Category

Conjugated Primary Antibodies

Host Organism

Rabbit (Oryctolagus cuniculus)

Also known as

Anti-FUT6/FucT-VI PAb ALEXA FLUOR 488

Specificity

This is a highly specific antibody against FUT6/FucT-VI.

Long name

FUT6/FucT-VI Polyclonal Antibody, ALEXA FLUOR 488 Conjugated

Cross-reactive species details

Due to limited amount of testing and knowledge, not every possible cross-reactivity is known.

Source

This antibody was obtained by immunization of the host with KLH conjugated synthetic peptide derived from human FUT6/FucT-VI

Synonyms

Alpha 1,3 fucosyltransferase; EC=2.4.1.65; FCT3A; Fuc TVI; Fucosyltransferase 6; Fucosyltransferase VI; FucT VI; Galactoside 3 L fucosyltransferase; FUT6_HUMAN.

Storage conditions

Store this antibody in aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Keep refrigerated at 2 to 8 degrees Celcius for up to one year.

Properties

For facs or microscopy Alexa 1 conjugate.Alexa Fluor 488 has the same range to that of fluorescein isothiocyanate (FITC), yet the Anti-FUT6/FucT-VI has a very high photo stability. As a result of this photo stability, it has turned into an antibody for fluorescent microscopy and FACS FLOW cytometry. It is distinguished in the FL1 of a FACS-Calibur or FACScan. Also Alexa Fluor 488 is pH stable.If you buy Antibodies supplied by Bioss Primary Conjugated Antibodies. ALEXA FLUOR they should be stored frozen at - 24°C for long term storage and for short term at + 5°C.

Background of the antigen

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which is an essential interface for biological recognition processes. Fucosyltransferases catalyze the covalent association of fucose to different positional linkages in sugar acceptor molecules. The carbohydrate moieties generated and covalently attached to cell surfaces are necessary to ensure a surface contour that satisfies physiological roles, which are reliant on adhesion molecules such as Selectins (1-3). Hematopoietic lineages rely on Fucosyltransferases to confer a surface carbohydrate phenotype, which mediates proper cell adhesion molecule recruitment and cell trafficking (4-6).